Segment Tree¶
Basic segment tree is quite easy to understand.
ZKW Segment Tree¶
ZKW segment tree views the tree as a heap-like structure.
We always assume there are \(n = 2^p\) for simplicity.
In segment tree, the leaf node corresponding to \(a[i]\) is \(i + n\), where \(n\) is the size of array \(a\). Thus it's quite straightforward to modify/query on a single position.
What about range query?
Suppose we want to query interval \([l, r]\), then we set two sentinels \(s_l, s_r\) to be \(l-1\) and \(r + 1\).
Move upward in segment tree from \(s_l\) and \(s_r\) and check:
- if \(s_l\) is the left child, then take into account the value of the right child (the sibling of \(s_l\));
- if \(s_r\) is the right child, then take into account the value of the left child (the sibling of \(s_r\));
Here moving upward in segment tree means:
s_l = s_l / 2;
s_r = s_r / 2;
If we further consider range modify, we still need a tag. But unlike classical segment tree, we don't need to pushdown these tags. During query, we move upward, and at this time we naturally add up all the tags along the way up to root.
So the implementation could look like this:
void update_add(int l, int r, ll k) {
l = P + l - 1;
r = P + r + 1; // 哨兵位置
int siz = 1; // 记录当前子树大小
while (l ^ 1 ^ r) { // 当l与r互为兄弟时,只有最后一位不同
if (~l & 1)
tr[l ^ 1] += siz * k, sum[l ^ 1] += k;
if (r & 1)
tr[r ^ 1] += siz * k, sum[r ^ 1] += k;
// 类似递归线段树 tr[p] += tag[p]*(r-l+1)
l >>= 1;
r >>= 1;
siz <<= 1;
// 每次向上走时子树大小都会增加一倍
tr[l] = tr[l << 1] + tr[l << 1 | 1] + sum[l] * siz; // 维护父子关系
tr[r] = tr[r << 1] + tr[r << 1 | 1] + sum[r] * siz;
}
for (l >>= 1, siz <<= 1; l; l >>= 1, siz <<= 1)
tr[l] = tr[l << 1] + tr[l << 1 | 1] + sum[l] * siz; // 更新上传至根节点
}
ll query_sum(int l, int r) {
l = l + P - 1;
r = r + P + 1;
ll res = 0;
int sizl = 0, sizr = 0, siz = 1; // 分别维护左右两侧子树大小
while (l ^ 1 ^ r) {
if (~l & 1)
res += tr[l ^ 1], sizl += siz; // 更新答案及子树大小
if (r & 2)
res += tr[r ^ 1], sizr += siz;
l >>= 1;
r >>= 1;
siz <<= 1;
res += sum[l] * sizl + sum[r] * sizr;
// 即使当前节点所存的区间和不需要用,但因为其是两个哨兵的父亲节点,且 tag
// 不会下传, 所以其 tag 会对答案有贡献,所以需要加上 tag 的贡献
}
for (l >>= 1, sizl += sizr; l; l >>= 1)
res += sum[l] * sizl; // 累加至根节点
return res;
}